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It has recently been suggested that vacuum black holes of General Relativity (GR) can become 
spontaneously scalarised when appropriate non-minimal couplings to curvature invariants are considered. 
These models circumvent the standard black hole no scalar hair theorems of GR, allowing both 
the standard GR solutions and new scalarised (a.k.a. hairy) solutions, which in some cases are 
thermodynamically preferred. Up to now, however, only (static and spherically symmetric) scalarised 
Schwarzschild solutions have been considered. It would be desirable to take into account the effect 
of rotation; however, the higher curvature invariants introduce a considerable challenge in obtaining 
the corresponding scalarised rotating black holes. As a toy model for rotation, we present here the 
scalarised generalisation of the Schwarzschild-NUT solution, taking either the Gauss–Bonnet (GB) or 
the Chern–Simons (CS) curvature invariant. The NUT charge n endows spacetime with “rotation”, but 
the angular dependence of the corresponding scalarised solutions factorises, leading to a considerable 
technical simplification. For GB, but not for CS, scalarisation occurs for n = 0. This basic difference leads 
to a distinct space of solutions in the CS case, in particular exhibiting a double branch structure. In the 
GB case, increasing the horizon area demands a stronger non-minimal coupling for scalarisation; in the 
CS case, due to the double branch structure, both this and the opposite trend are found. We briefly 
comment also on the scalarised Reissner–Nordström-NUT solutions.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It has long been known that violations of the strong equiva-
lence principle, via the inclusion of non-minimal couplings, can 
lead to asymptotically flat black hole (BH) scalar “hair” — see 
[1–7] and [8–10] for recent reviews. More recently [11–13], it has 
been appreciated that for a wide class of non-minimal couplings, 
the model accommodates both scalarised BHs and the standard 
vacuum General Relativity (GR) solutions (see also [14–16]). This 
led to the conjecture that a phenomenon of “spontaneous scalar-
isation” occurs in these models [11,12], akin to the spontaneous 
scalarisation of neutron stars first discussed in [17], within scalar 
tensor theories, but with the key difference that the phenomenon 
is triggered by strong gravity rather than by matter. Indeed, for 
some choices of the function defining the non-minimal coupling, 
scalarised BHs are thermodynamically preferred over the GR solu-
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tions and linearly stable [18], suggesting such spontaneous scalari-
sation occurs dynamically.

Black hole spontaneous scalarisation was indeed confirmed to 
occur dynamically in a different class of model [19], albeit within 
the same universality class related to non-minimal couplings. In 
this case, the scalar field non-minimally couples to the Maxwell 
invariant, rather than to higher curvature invariants, leading to a 
phenomenon of spontaneous scalarisation for electro-vacuum GR 
BHs. The technical simplification resulting from the absence of the 
higher curvature terms, allowed, besides showing dynamically the 
occurrence of spontaneous scalarisation, to explore the space of 
non-spherical static solutions that the model contains.1

In all cases mentioned above, only static scalarised solu-
tions have been considered, which connect to the Schwarzschild 
(or Reissner–Nordström) solution in the vanishing scalar field limit. 
It would be of interest to include rotation in this analysis, by 
considering the scalarisation of the Kerr solution. This is, how-

1 Charged scalarised BHs were also recently considered in models with a scalar 
field non-minimally coupled to higher curvature corrections [20].
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

https://doi.org/10.1016/j.physletb.2018.11.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:eugen.radu@ua.pt
https://doi.org/10.1016/j.physletb.2018.11.022
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2018.11.022&domain=pdf


296 Y. Brihaye et al. / Physics Letters B 788 (2019) 295–301
ever, considerably more challenging than the spherically symmetric 
cases, due to the combination of the higher curvature correc-
tions and the higher co-dimensionality of the problem, due to the 
smaller isometry group.

In this paper we analyse the scalarisation of a different gen-
eralisation of the Schwarzschild solution, the Taub–Newman–
Tamburino–Unti solution (Taub-NUT) [21,22]. This solution of 
the Einstein vacuum field equations can be regarded as the 
Schwarzschild solution with a NUT “charge” n (hereafter referred 
to as the Schwarzschild-NUT solution) which endows the space-
time with rotation in the sense of promoting dragging of inertial 
frames. It is often described as a ‘gravitational dyon’ with both or-
dinary and magnetic mass. The NUT charge n plays a dual role 
to ordinary ADM mass M , in much the same way that elec-
tric and magnetic charges are dual within Maxwell’s electromag-
netism [23]. The Schwarzschild-NUT solution is not asymptotically 
flat in the usual sense, although it does obey the required fall-
off conditions [24]; for scalarisation, nonetheless, which is mostly 
supported in the neighbourhood of the horizon, the non-standard 
asymptotics are of lesser importance. In fact, the existence of 
scalarised solutions with these asymptotics supports the univer-
sality of the scalarisation phenomenon. The Schwarzschild-NUT 
solution is a case study in GR, with a number of other unusual 
properties [24], and its Euclideanised version has been suggested 
to play a role in the context of quantum gravity [25].

Here, we shall exhibit some basic properties of scalarised 
Schwarzschild-NUT solution. This scalarisation will have a geomet-
ric origin, occurring due to a non-minimal coupling of a scalar 
field and a higher curvature invariant. We shall consider two 
cases. The first case is the Einstein–Gauss–Bonnet-scalar (EGBs) 
model, which uses the four dimensional Euler density (Gauss–
Bonnet invariant). The corresponding solutions described herein 
generalise for a non-zero NUT parameter the recently discovered 
scalarised Schwarzschild BHs in [11–13]. The Kerr-like form of 
the Schwarzschild-NUT spacetime also allows, moreover, consider-
ing a second case, the Einstein–Chern–Simons-scalar (ECSs) model, 
wherein the geometric scalarisation occurs due to a coupling be-
tween the scalar field and the Potryagin density.

This paper is structured as follows. In Section 2 we review 
the basic framework, including the field equations and ansatz. The 
main results of this work are given in Section 3. First, we present 
a test field analysis, wherein the backreaction of the scalar field 
on the metric is neglected. The corresponding solutions — scalar 
clouds — occur at branching points of the Schwarzschild-NUT solu-
tion, effectively requiring a quantisation of the parameters of this 
solution. Then the non-perturbative solutions are also studied. In 
particular, we exhibit their domain of existence in terms of the 
relevant parameters. In Section 4 we summarise our results and 
provide some further remarks together with possible avenues for 
future research.

2. The model

2.1. The action and field equations

We consider the following action functional

S = 1

16π

∫
d4x

√−g

[
R − 1

2
∂μφ∂μφ + f (φ)I(g)

]
, (2.1)

that describes a generalised gravitational theory containing the 
Ricci scalar curvature R and a massless real scalar field φ which is 
non-minimally coupled to the spacetime geometry, via a coupling 
function f (φ) and a source term I(g), which is built in terms of 
the metric tensor and its derivatives only.
We shall consider two cases for I(g), corresponding to two dif-
ferent models2:

i) the Einstein–Gauss–Bonnet-scalar (EGBs) model: I = LG B ≡
R2 − 4Rab Rab + Rabcd Rabcd ,

ii) the Einstein–Chern–Simons-scalar (ECSs) model: I = LC S ≡
R R̃ = ∗Ra

b
cd Rb

acd .

Both LG B and LC S are topological (total derivatives) in four dimen-
sions. Due to the coupling to the scalar field φ specified by f (φ), 
however, they become dynamical, contributing to the equations of 
motion.

The field equations obtained by varying (2.1) with respect to φ
and gab are

∇2φ + df (φ)

dφ
I = 0 , (2.3)

for the scalar field, and

Gab = 1

2
T (eff)

ab , (2.4)

for the gravitational field. We have chosen to present (2.4) in a 
GR-like form, where Gab is the Einstein tensor and T (eff)

ab is the 
effective energy momentum tensor,

T (eff)
ab ≡ T (φ)

ab + T (grav)

ab , (2.5)

which is a combination of the scalar field energy–momentum ten-
sor,

T (φ)

ab ≡ (∇aφ) (∇bφ) − 1

2
gab (∇cφ)

(∇cφ
)

, (2.6)

and a supplementary contribution which depends on the explicit 
form of I . For the cases herein we have

T (grav)

ab = − (
gak gbj + gbk gaj

)
ηkhcdηi je f Rcdef ∇h∇i f (φ) , (2.7)

for a GB source term, and

T (grav)

ab = −8Cab , with

Cab = [∇c f (φ)]εcde(a∇e Rb)
d + [∇c∇d f (φ)] ∗Rd(ab)c , (2.8)

in the CS case.

2.2. The spontaneous scalarization mechanism

The possible occurrence of a ‘spontaneous scalarisation’ in this 
class of models relies on two ingredients. Firstly, there must exist 
a scalar-free solution, with

φ = φ0 , (2.9)

which is the fundamental solution of equation (2.3). This require-
ment implies the coupling function should satisfy the condition

∂ f

∂φ

∣∣∣
φ=φ0

= 0 . (2.10)

This condition signifies that the usual GR solutions also solve the 
considered model, forming the fundamental set. We remark one 

2 ∗Ra
b

cd is the Hodge dual of the Riemann-tensor

∗ Ra
b

cd ≡ 1

2
ηcdef Ra

bef , (2.2)

where ηcdef is the 4-dimensional Levi-Civita tensor, ηcdef = εcdef /
√−g and εcdef

the Levi-Civita tensor density.
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can set φ0 = 0 without any loss of generality (via a field redefini-
tion).

Secondly, the model possesses a second set of solutions, with 
a nontrivial scalar field — the scalarised solutions. In the asymptot-
ically flat case, these solutions can be entropically preferred over 
the fundamental ones (i.e. they maximise the entropy for given 
global charges) [18,19]. Moreover, they are smoothly connected 
with the scalar-free solution, approaching it for φ = 0.

2.3. The scalar-free Schwarzschild-NUT solution

The scalar-free solution we wish to consider, within the model 
(2.3)–(2.4), is the Schwarzschild-NUT solution. It has φ = 0 and line 
element:

ds2 = −N(r)σ 2(r)(dt + 2n cos θdϕ)2 + dr2

N(r)
+ g(r)(dθ2

+ sin2 θdϕ2) , (2.11)

with

g(r) = r2 + n2 , (2.12)

and

N(r) = 1 − 2(Mr + n2)

r2 + n2
, σ (r) = 1 . (2.13)

In (2.11), θ and ϕ are the standard angles parameterising an S2

with the usual range. As usual, we define the NUT parameter n
(with n � 0, without any loss of generality), in terms of the coeffi-
cient appearing in the differential dt + 2n cos θdϕ . Also, r and t are 
the ‘radial’ and ‘time’ coordinates.

This metric possesses a horizon located at3

rh = M +
√

M2 + n2 > 0. (2.14)

As in the Schwarzschild limit, N(rh) = 0 is only a coordinate sin-
gularity where all curvature invariants are finite. In fact, a nonsin-
gular extension across this null surface can be found [26].

Both the Gauss–Bonnet and Pontryagin densities are non-
vanishing in this background:

LG B = 48M2

g6
[g2 − 16n2r2](r2 − n2)

[
1 + n

M

(r − n)(g + 4nr)

(r + n)(g − 4nr)

]

×
[

1 − n

M

(r + n)(g − 4nr)

(r − n)(g + 4nr)

]
, (2.15)

and

LC S = 24n

rg2

[
1 − N(r2 − 3n2)

g

][
1 − N(3r2 − n2)

g

]
. (2.16)

In particular, the vanishing of LC S for n = 0, justifies the interpre-
tation of n as a gravitomagnetic “mass”.

We remark that the thermodynamical description of (Lorentzian 
signature) solutions with NUT charge is still poorly understood. 
Consequently, the solutions’ properties in this respect will not be 
pursued herein (e.g. the usual entropy comparison between the 
vacuum and scalarised solutions). Still, the mass of solutions with 
NUT charge can be computed by employing the quasi-local formal-
ism supplemented with the boundary counter-term method [27]. 

3 For n �= 0, a negative value of the ‘electric’ mass M is allowed for the NUT 
solution. Such configurations are found for 0 < rh < n and do not possess a 
Schwarzschild limit. As such, they are ignored in this work.

A
c
in

g

2

N
m
b
fi
d

φ

In
fu

f

w

in
n
e

L
w

L

L

a

L

a

L

R
la
s

in

α

c
t
α
t

ti
f

direct computation shows that, similar to the Einstein gravity 
ase, the mass of the solutions is identified with the constant M
 the far field expansion of the metric function gtt ,

tt = −Nσ 2 = −1 + 2M

r
+ . . . . (2.17)

.4. Ansatz and choice of coupling

To consider the scalarised generalisations of the Schwarzschild-
UT spacetime, we consider again the metric ansatz (2.11). The 
etric functions N(r), σ (r) and g(r) are now unknown, that shall 

e determined from the requirement that this metric solves the 
eld equations (2.3)–(2.4). We have kept some metric gauge free-
om in (2.11), which shall be conveniently fixed later.

The scalar field is a function of r only,

≡ φ(r). (2.18)

 this work, we shall restrict ourselves to the simplest coupling 
nction which satisfies the condition (2.10) (with φ0 = 0):

(φ) = αφ2 , (2.19)

ith the coupling constant α an input parameter.
The equations satisfied by N(r), σ(r), g(r) and φ(r) are rather 

volved and unenlightening; we shall not include them here. We 
otice, however, that they can also be derived from the following 
ffective action4:

eff = LE +Lφ + αLIφ , (2.20)

here

E = 2σ

[
1 +

(
N ′

2N
+ g′

4g
+ σ ′

σ

)
Ng′ + σ 2N

g
n2

]
,

φ = −1

2
Nσ gφ′ 2 ,

nd LIφ =LG Bφ or LIφ =LC Sφ , where

G Bφ = 8σ N

[(
N ′

N
+ 2σ ′

σ

)(
1 − Ng′ 2

4g

)

+ n2Nσ 2

g

(
3N ′

N
− 2g′

g
+ 6σ ′

σ

)]
φφ′ ,

nd

C Sφ = 16nN2σ 2
[

1

4

(
N ′

N
− g′

g
+ 4σ ′

σ

)(
N ′

N
− g′

g

)

+ σ ′ 2

σ 2
− 1

gN
− 2n2σ 2

g2

]
φφ′ .

emarkably, one can see that, due to the factorisation of the angu-
r dependence permitted by the metric ansatz (2.11), all functions 

olve second order equations of motion also in ECSs case.5

The reduced action (2.20) makes transparent the residual scal-
g symmetry of the problem (λ is a nonzero constant)

→ αλ2, r → λr, n → λn, and g → λ2 g, (2.21)

orresponding to the freedom in choosing a unit length. Therefore 
he solutions are characterised by dimensionless quantities such 
/M2, Q s/M and n/M , which shall be used below to describe 

hem (Q s, M shall be defined below, cf. Eq. (3.29)).

4 In these expressions a prime denotes a derivative w.r.t. the radial coordinate r.
5 Without this factorisation, the metric functions would solve third order par-
al differential equations, as in the case of the Kerr metric in ECSs theory, with 
(φ) = αφ [28].
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Fig. 1. The k = 0,1,2 existence lines for the EGBs (left panel) and the ECSs (right panel) models in a NUT charge vs. coupling parameter diagram.

Fig. 2. The k = 0, 1, 2 existence lines for the EGBs (left panel) and the ECSs (right panel) models in a reduced horizon area aH = AH /(16π M2) vs. coupling parameter diagram, 
where AH ≡ 4π g(rh) is the area of the round-S2 part of the line element (2.11) evaluated at the horizon.
3. Scalarised solutions

3.1. The zero-mode

We first consider the test field limit. That is, we focus on 
the scalar field equation (2.3) on a fixed Schwarzschild-NUT back-
ground:

1

g(r)

d

dr

[
g(r)N(r)φ′] + 2αφI = 0 , (3.22)

where I is given by (2.15) or (2.16), respectively. For our pur-
pose, solving (3.22) is an eigenvalue problem: selecting appropriate 
boundary conditions and fixing the values of (n, α), selects a dis-
crete set of BHs, as specified by the mass parameter M . These are 
the bifurcation points of the scalar-free solutions. The (test) scalar 
field profiles they support — hereafter scalar clouds — are distin-
guished by the number of nodes of φ, k � 0.

The boundary behaviours of the scalar field are regularity on 
the horizon and vanishing at infinity. More concretely, the approx-
imate expression of the solution close to the horizon reads

φ(r) = φ0 + φ1(r − rh) +O(r − rh)
2 , (3.23)

with

φ1 = 24αφ0(n2 − r2
h)

rh(r2
h + n2)2

for EGBs and

φ1 = − 48αφ0n

(r2
h + n2)2

for ECSs . (3.24)
At infinity one finds

φ(r) = Q s

r
+ Q s(r2

h − n2)

2rhr2
+ . . . , (3.25)

in both cases, with Q s a constant fixed by numerics. No exact so-
lution appears to exist even for n = 0 and equation (3.22) is solved 
numerically. The corresponding results — the existence lines — for 
the EGBs and ECSs are shown in Fig. 1, in units given by the mass 
parameter M . Amongst the notable features we highlight: (i) the 
existence in both cases, of a minimal value of the coupling con-
stant α below which no zero modes with a given number of nodes 
exists6; (ii) the CS model possess a double branch structure, with 
the existence of two different critical NUT solutions for the same 
(α, M), which are distinguished by the value of the NUT charge.

In Fig. 2, the same existence lines are shown in terms of the 
reduced horizon area. One observes that the larger the horizon 
grows, the stronger the coupling has to be at the branching point, 
for the EGBs case. For the ECSs case, on the other hand, both this 
and the opposite trend can be found, corresponding to the two 
branches.

3.2. Non-perturbative results

3.2.1. Asymptotics and remarks on numerics
We are interested in scalarised solutions whose far field asymp-

totics are similar, to leading order, to those the scalar-free so-

6 This holds also the n = 0 limit of the GB model; there one finds α/M2 = 0.3631.
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Fig. 3. Profile functions of a typical EGBs scalarised nodeless solution (left panel) and of a typical ECSs scalarised k = 1 solution (right panel).
lution (2.13): N(r) → 1, g(r) → r2, σ(r) → 1 and φ(r) → 0, as 
r → ∞. The solution will also posses a horizon at r = rh > 0, where 
N(rh) = 0, and g(r), σ(r) are strictly positive.

Since the scalarised configurations are smoothly connected with 
the vacuum NUT solution, it is natural to choose the same metric 
gauge (2.12).7 Then we are left with a system of three non-linear 
ODEs (plus a constraint) for the functions N, σ and φ. These equa-
tions do not appear to possess closed form solutions, and are con-
structed by solving numerically a boundary value problem in the 
domain rh � r < ∞ (with rh > 0). As r → rh , one takes a power 
series expansion of the solution in (r − rh), the first terms being

N(r) = N1(r − rh) + N2(r − rh)
2 + . . . ,

σ (r) = σ0 + σ1(r − rh) + . . . ,

φ(r) = φ0 + φ1(r − rh) + . . . , (3.26)

with all coefficients in this expansion being fixed by the set 
{N1, σ0, φ0}. These parameters are subject to the following con-
straint:

N1rh = 1 + 96α2N2
1(r2

h − n2σ 2
0 )φ2

0

(n2 + r2
h)2

, for EGBs , (3.27)

N1rh = 1 + 192α2N3
1n2rhσ

2
0 φ2

0

(n2 + r2
h)2

, for ECSs . (3.28)

The leading order expansion in the far field is the same in both 
cases:

N(r) = 1 − 2M

r
− Q 2

s − 8n2

4r2
+ . . . , σ (r) = 1 − Q 2

s

8r2
+ . . . ,

φ(r) = Q s

r
+ M Q s

r2
+ . . . , (3.29)

introducing the parameters M and Q s which are fixed by numer-
ics; M is identified as the mass of solutions, cf. (2.17). The constant 
Q s can be interpreted as the ‘scalar charge’, giving a quantitative 
measure of ‘hairiness’ of the solutions.

For the EGBs model, the numerical integration was carried out 
using a standard shooting method. In this approach, we evalu-
ate the initial conditions at r = rh + 10−6 for global tolerance 
10−14, adjusting for shooting parameters and integrating towards 
r → ∞. The ECSs solutions were found by using a professional 
software package [29]. This solver employs a collocation method 

7 Most of the ECSs solutions, however, were constructed for a metric gauge choice 
with σ(r) = 1 and unknown metric functions N, g .
for boundary-value differential equations and a damped Newton 
method of quasi-linearisation. In both cases, the input parameters 
were {rh, n; α}. We also remark that the configurations reported 
in this work are regular on and outside the horizon, all curvature 
invariants being finite.

3.2.2. Numerical results
As an illustration of the numerical results obtained in this way, 

the profile of a typical solution is shown in Fig. 3 for a nodeless 
scalar field in EGBs model and a k = 1 ECSs configuration.8

Let us now take a closer look at the domain of existence 
of the scalarised Schwarzschild-NUT solutions, starting with the 
EGBs model. The corresponding domain of existence is shown in 
Fig. 4. The solutions form a band in the (α, n) (or (α, Q s)) plane, 
bounded by two curves: (i) the existence line and (ii) a set of 
critical solutions explained below. In units of M , for each α above 
a minimal value, scalarised solutions bifurcate from the vacuum 
Schwarzschild-NUT solution with a particular value of n at the ex-
istence line. Then, for given (n, M), the scalarized solutions exist 
only within some α range, αmin < α < αmax , with the limiting val-
ues increasing with the ratio n/M . Each constant α-branch starts 
on the existence line and ends at a critical configuration where 
the numerics stop to converge. The critical configuration does not 
possess any special properties. As with other solutions in various 
d = 4 EGBs models, its existence can be traced to the horizon con-
dition (3.27): the reality of N1 implies that solutions with given 
(rh, n) can only exist if the coupling constant α is smaller than a 
critical value.

A similar picture to what has just been described can be found 
for the ECSs case. As can be anticipated from Fig. 1, however, there 
is a new ingredient: the existence of a double band structure of 
solutions — see Fig. 5. One can see that, for any n, no scalarized 
solutions exist below a critical value of α. Also, the n → 0 limit 
cannot be reached for any finite α, as expected from the fact that 
the Chern–Simons term vanishes for n = 0. The domain of exis-
tence of the solutions is bounded again by the existence line and 
a critical line. The presence of critical ECSs configurations can be 
traced back, again, to the near horizon condition (3.28) which, for 
given (rh, n), stopped being satisfied for large enough α.

4. Further remarks

The main purpose of this work was to investigate the basic 
properties of the scalarised Schwarzschild-NUT solution, viewed as 

8 For a given k, the typical profiles are similar in both models.
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Fig. 4. Part of the domain of existence in the (α, n) and (α, Q s) spaces (in units set by M) where scalarized Schwarzschild-NUT solutions exist in EGBs model. Only the 
fundamental (k = 0) scalarization region is exhibited, but an infinite number of domains, indexed by the node number of the scalar field, should exist.

Fig. 5. Same as Fig. 4 for scalarised Schwarzschild-NUT solutions of the ECSs model.
a toy model for the scalarised rotating Kerr BH. Indeed, the line-
element of the former solution is Kerr-like, in the sense that it has 
a crossed metric component gϕt , cf. (2.11). This term does not pro-
duce an ergoregion but it leads to an effect similar to the dragging 
of inertial frames [30]. In fact one can interpret the Schwarzchild-
NUT spacetime as consisting of two counter-rotating regions, with 
a vanishing total angular momentum [31,32].

Our results show the following main trends. Firstly, for the EGBs 
model, but not for the ECSs case, scalarised solutions exist for the 
vanishing NUT charge case, n = 0. This is easy to understand from 
the fact that only for n �= 0, the Pontryagin density is excited in 
the scalar-free case, cf. eq. (2.16). This basic difference leads to a 
distinct domain of existence of solutions in the CS case, in particu-
lar exhibiting a double branch structure. In both cases the domain 
of existence of scalarised solution, for fixed NUT charge, is limited 
to a finite interval of coupling parameters α. At the lowest cou-
pling, the limiting solutions define the existence line, i.e. the line 
of scalar-free solutions that can support a scalar cloud, as a test 
field configuration. At the largest coupling, the limiting solutions 
define a critical line of maximally scalarised solutions. This inter-
val of couplings wherein scalarised solutions occur varies with the 
NUT charge as follows. In the GB case, increasing the NUT charge 
(for fixed M) demands a stronger non-minimal coupling for scalar-
isation; in the CS case, due to the double branch structure, both 
this and the opposite trend are found. We expect the same trends 
to occur, in terms of the horizon area rather than NUT charge, in 
the Kerr case, which is confirmed by preliminary results.

Albeit a rather unusual spacetime, the Schwarzschild-NUT so-
lution has been generalised in various directions. In particular, 
gauge fields have been added [33–35].9 The simplest of these 
solutions [33] represents an electrically charged version of the 
Schwarzschild-NUT solution, the Reissner–Nordström-NUT solu-
tion. This spacetime can be scalarised in a different way: by a 
non-minimal coupling of the scalar field to the Maxwell invari-
ant, following the recent work [19]. That is, we take the action 
(2.1) but with

I = Fab F ab , (4.30)

where F = dA. The Reissner–Nordström-NUT solution can be ex-
pressed in the generic form (2.11), with (we consider the electric 
version of the solution only):

g = r2 + n2 , σ (r) = 1 , N(r) = r2 − 2Mr − n2 + Q 2

r2 + n2
,(4.31)

and a U (1) potential

A = Q r

r2 + n2
(dt + 2n cos θdϕ) . (4.32)

Here Q is interpreted as an electric charge. Choosing a coupling 
function [19]

f (φ) = e−αφ2
, (4.33)

9 Another generalisation, within a low-energy effective field theory from string 
theory is found in [36]. All these solutions share the same properties of the vacuum 
NUT metric, in particular the same asymptotic and causal structure.



Y. Brihaye et al. / Physics Letters B 788 (2019) 295–301 301
Fig. 6. k = 0 existence lines for the Reissner–Nordström-NUT solution for different 
values of the NUT charge normalised to the electric charge Q .

we have performed a preliminary study of the corresponding scalar 
clouds. The existence lines are shown in Fig. 6 for several values 
of the ratio n/M . The red dots at the end of the curves indicate 
limiting configurations where the function N(r) in (4.31) devel-
ops a double zero (i.e. the extremal Reissner–Nordström BH for 
n = 0). The new feature for n �= 0 is the existence, for the same 
value of the coupling constant, of two different unstable Reissner–
Nordström-NUT configurations, distinguished by the value of the 
ratio Q /M .

Finally, we mention two other possible directions to bring to-
gether scalarisation and the Schwarzschild-NUT solution. Firstly, 
one could study the properties of the Euclideanised Schwarzschild-
NUT solution, within the model (2.1). Could there be scalarised 
instantons? In this context, we recall that the Euclideanised 
Schwarzschild-NUT solution has found interesting applications in 
the context of quantum gravity [25]. Secondly, continuing the 
Schwarzschild-NUT metric through its horizon at r = rh leads to 
the Taub universe, a homogeneous, non-isotropic cosmology with 
an S3 spatial topology. Whereas the Schwarzschild solution has a 
curvature singularity at r = 0, this is not the case for n �= 0 and 
the radial coordinate in the Schwarzschild-NUT solution may span 
the whole real axis. Thus, following [37,38], it could be interesting 
to investigate the behaviour of the scalarised solutions inside the 
horizon.
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